

The Goulburn Hashing Function

Mayur Patel

*

Abstract

We discuss the use of random numbers in computer

graphics. We analyze a new hashing function, which we

call Goulburn, and argue that it is well-suited for

computer graphics because of its very high quality and

speed. We discuss how to apply Goulburn to

applications requiring pseudo-random number

generation.

1. Introduction

Random numbers are critical in computer graphics, from sampling

to aesthetics. We believe that there are three families of random

sources of interest to computer graphics developers:

• Quasi-random number generators (QRNGs)

• Pseudo-random number generators (PRNGs)

• Hashing functions

Ideally a developer’s toolbox would include high-quality

algorithms for each of the three random sources.

In practice, however, developers will often substitute tools. In

computer graphics sampling applications, it is usually sufficient to

use PRNGs to produce jittered sample positions rather than to use

QRNGs to produce low discrepancy sequences of sample points.

In a similar spirit, a PRNG can be implemented using a hashing

function in the following way: the seed for the generator would

constitute the most significant bits of a very large integer counter.

The integer counter can be hashed to produce a random value.

Between calculations, the counter can be incremented by one.

This is a known technique in cryptography, where secure PRNGs

are implemented using secure hashing functions.

Producing random values this way allows the developer to control

the state size of the PRNG very explicitly. This is particularly

important in agent simulations which may require an instance of a

PRNG for each agent. Modern high-quality PRNGs often have

large fixed-size states, making it prohibitive for very many

instances to coexist in memory. A good hashing function will be

able to produce random values with sufficient speed and quality.

Because PRNGs can be substituted for QRNGs in many cases,

and good hashing functions can be substituted for PRNGs, we

focus on good hashing functions as a random source for computer

graphics.

We found many popular hashing functions to be inadequate for

computer graphics. Some very fast hashing functions are

sufficiently random to avoid collisions in a hash table, but still

produce artifacts when used for lattice noises [Uzgalis and Tong

1994; Noll]. Jenkins’ hash provides a high quality of randomness,

but its speed is not exceptional [1997]. Inspired by the table-

based techniques used in Buzhash and Pearson’s algorithm

[1990], we developed a hashing function suitable for computer

graphics, which we call Goulburn.

In the next section, we discuss Goulburn’s relationships to

existing hashing functions. In section 3, we discuss the design of

Goulburn. In section 4, we discuss the implementation of a

PRNG using Goulburn. In section 5, we present the results of

empirical testing.

2. Prior Art

These are the most common application of hashing functions in

computer science:

• Error detection in information exchange.

• Fast indexing of data / accelerating compare operations.

• Cryptography.

For most error detection and indexing applications, the avoidance

of collisions is the foremost consideration, not the quality of

randomness. We found readily recognizable patterns in the output

of many hashing functions that perform well for indexing

applications [Pearson 1990; Uzgalis and Tong 1994; Noll]. Some

of these results are presented in section 5. Cryptographically

secure hashing functions and strongly universal hashing functions

do emphasis a good quality of randomness; however, we found

these algorithms to be much less flexible in their application.

They tended to require fixed-sized input or input in large fixed-

size blocks.

For computer graphics, we require the hashing function to return

high-quality random values from variable-length keys. We also

require very fast execution, because the hashing function will

likely be called a very large number of times.

In our investigations, table-based general hashing functions

seemed to have the greatest potential to meet all requirements, so

we focused our attention there. Zobrist’s hash [1970] is an early

form of table-based hashing. The table for this function needs to

be tailored for each context, so we did not find it best as a general

hashing function. Pearson’s hash [1990] requires processing

output in 8-bit chunks, so that a 32-bit result requires four

iterations. Buzhash is very fast, but despite the author’s strong

assertions of quality [Uzgalis and Tong 1994], we were readily

able to find patterns in the output which made its quality

unacceptable for our graphics applications.

Goulburn can best be described as an evolution of Pearson’s hash

and Buzhash. In the next section, we describe the function in

some detail.

3. The Goulburn Hashing Function

Goulburn is a general hashing function. Like many hashing

schemes, Goulburn is based on executing a series of instructions

that are one-to-one mappings, whose range and domain are the

same set of values when executed on modern microprocessors.

This helps to insure that collisions do not occur unnecessarily

frequently. Here is a list of such instructions:

• f(x) = x + i

• f(x) = x ^ i

• f(x) = r(x, j)

• f(x) = x ^ r(x, j)

with the following definitions:

• i and j are integers; j ≠ 0

• “^” is the bitwise XOR operation

• r(x, j) is the circular left shift of x by j bits.

The inner loop of the 32-bit hashing function is listed, using C:

1. for(u=0; u<len; ++u)
2. {
3. h += table0[c[u]];
4. h ^= (h << 3) ^ (h >> 29);
5. h += table1[h >> 25];
6. h ^= (h << 14) ^ (h >> 18);
7. h += 1783936964UL;
8. }

Clearly, we could produce 64-bit or 128-bit hash values on

machines that support registers of those widths, without

significant additional expense. A more thorough listing of the

Goulburn function can be found in the appendices.

Lines 3 and 4 closely resemble a Buzhash function. Table zero is

constructed in the same manner as the table used in Buzhash: the

table is an unbiased, randomized set of binary words. Lines 5 and

6 apply additional randomization to avoid “echoing” patterns

observed when using Buzhash in visual applications.

Table one contains binary words, where each word has an equal

number of ones and zeroes, but the exact permutations are

random. We do this to guarantee that the addition instruction in

line 5 toggles at least half the bits of the word.

Buzhash and Pearson’s hash use the XOR instruction, relying on

the property that the XOR of two values has the maximum

entropy of the two values. In other words, if you cannot predict

the value of either X or Y, then you cannot predict the value of the

XOR of X and Y. The quality of randomness is intended to come

from the lookup table, and this quality is intended to be preserved

through the XOR operations.

Goulburn uses ADD instructions on lines 3 and 5 instead of XOR.

We do this to increase the complexity of the relationships between

the random values in the tables and the bits of the hash value. Let

binary words X and Y consist of binary digits, xn..x0, and yn..y0

respectively, and let Y be a uniformly distributed random value.

The addition of the least significant bits, x0 and y0, creates an

output value which has the maximum entropy of x0 and y0 because

this is simply an XOR operation. The carry bit becomes an extra

random signal, even if it is a weak one, to be applied to the next

bit, where a three-way XOR is performed to produce that output

bit. In this way, randomness in less significant bits is carried to

more significant bits. In testing, we observed that this improved

the quality of randomness in our hashing function. The use of an

ADD instruction on line 7, and the rotations on lines 4 and 6,

insures that entropy is distributed more evenly, instead of

collecting in a narrow range of bits within the hash value.

Jenkins lists these as properties of a good general hashing

function [1997]:

1. Keys can be variable length, of any kind of data.

2. Sets of independent hashing functions may be required.

3. The hash calculation should be fast.

4. A change in any bit of the input could possibly affect

every bit of the output.

5. Common substrings and patterns between different

inputs should not increase the probability that the

hashes of the two keys are equal.

Goulburn loops byte-wise over a key, so it satisfies criterion one.

The tables used in Goulburn can be regenerated dynamically to

satisfy criterion two. In section five, we discuss performance

issues relating to criterion three. It suffices to say here that we

found Goulburn to be at least twice as fast as Jenkins’ function.

The application of the two random tables, followed with rotations,

insures that criteria four and five are satisfied.

4. Goulburn as a PRNG

In the introduction, we described how a good hashing function

could be used as a PRNG, by initializing the most significant bits

of a large integer counter with a seed value, by hashing this large

integer to produce random values, and by incrementing the large

integer between invocations of the function.

Goulburn, like many hashing functions, has a simple initialization

step, followed by a per-byte loop to produce the output hash

value. When used as a PRNG, this structure facilitates the

following optimization: if the large integer counter is

implemented as a series of bytes bn..b0, where b0 is the least

significant byte, and if the traversal order of the hash loop is from

bn to b0, then we can cache the hash of the partial word, bn..b1 so

we usually only need to execute the final iteration of the hash loop

to incorporate b0 into the final hash value. This means that most

invocations of the PRNG will execute in constant time regardless

of the size of the integer counter. Of course, when b0 overflows,

then we need to refresh our cached calculation, which is linear

with the size of the integer counter. If the output hash value is 32-

bits, then the optimization costs 32-bits of storage. However, the

dramatic increase in the performance of the PRNG can often

justify the additional storage expense. The listing in the

appendices demonstrates the technique.

When considering the periodicity of Goulburn as a PRNG,

unfortunately we cannot make very strong guarantees. If A is a

counter consisting of bytes an..a0, and B is a counter consisting of

bytes bm..b0, where a0 and b0 are the least significant bytes and are

unequal, then even if the hash value of A equals the hash value of

B, the two words do not represent the same state of the PRNG and

will not produce equivalent sequences. For proof of this, consider

incrementing A and B. The least significant bytes will now

produce very different values during the hash calculations

(especially during table lookup) and the hash output value will be

different.

However, imagine that A and B are the most significant bytes of

other larger counters, A’ and B’. Also let A’ and B’ have equal

least significant bytes: A’ has the bytes an..a0ci..c0 and B’ has the

bytes bm..b0ci..c0. In this case, A’ and B’ will have the same hash

value. In fact, they will produce equal hash values for a sequence

length of 256i+1. We know that some pair of A and B must exist,

because the hash value is of fixed size, so collisions must occur

for some pair of arbitrarily big keys. Because of this, we cannot

guarantee that the PRNG based on Goulburn will not demonstrate

some properties of short periodicity; however, in practice and

empirical testing we have not observed particularly bad results in

this regard.

In many computer graphics applications, the need for huge

periodicities is not as acute as it might be in some scientific

applications. Furthermore, since the quality of randomness is

good, it may not be harmful to observe short sequences of

redundant values at irregular intervals in computer graphics

applications. This is obviously not true for all fields of

computing.

L’Ecuyer gives these as criteria for good random number

generators [2001]:

• Guaranteed long periodicity

• Efficient in memory and execution

• Repeatable

• Portable

• Allows jumping forward and backward in the sequence

by large steps

• Emperically tested, both with statistical tests and in the

context of target applications.

Goulburn, as a PRNG, scores poorly in the first criterion, but does

well in the others. Results of empirical testing are the subject of

the next section.

5. Emperical Testing

In this section, we present tests for quality and speed for four

hashing functions: Buzhash, FNV1a, Jenkins’ hash and Goulburn.

In the following images, we simply produced an image of hash

values, where the color of each pixel is the hash of the 2D pixel

coordinate. It is easy to observe patterns in Buzhash and FNV1a.

Jenkins’ hash and Goulburn produced images that visually appear

to be random.

Figure 1: Image of a Buzhash output

Figure 2: Image of an FNV1a hash output

Figure 3: Image of a Jenkins’ hash output

Figure 4: Image of a Goulburn hash output

The visual representation is obviously not a rigorous test of

randomness. We tested the four functions using the Diehard

statistical tests. We analyzed hash values generated from two

different access patterns, an incrementing large integer key and

3D Hilbert curve coordinates. We believe these are representative

of the types of access patterns that developers observe in

computer graphics.

Hash Quality

Diehard Test Results

0

5

10

15

Buzhash FNV1a Jenkins Goulburn

P
a
s
s
e
d
 T
e
s
ts

Counter (8B) Hilbert (12B)

Goulburn passed all the Diehard statistical tests for both types of

keys. Jenkins’ hash matched Goulburn’s quality on the Hilbert

curve coordinates.

We also implemented PRNGs using the four hashing functions,

with a 64-bit state and with the optimization described in the

previous section, costing an extra 4 bytes of storage. We

compared the performance of these to Wagner’s implementation

of Mersenne Twister [Wagner 2003; Matsumoto and Nishimura

1998], which is generally considered to be the fastest PRNG of

very high quality.

PRNG Performance

0

2

4

6

8

10

Buzhash FNV1a Jenkins Goulburn MTw ister

s
e
c
o
n
d
s

Centrino Athlon64 Pentium4

Comparing the Goulburn PRNG to Mersenne Twister, it ran 15%

slower on an Athlon64 processor, 21% faster on a Pentium 4, and

24% faster on a Centrino processor. Buzhash and FNV1a tended

to outperform Goulburn, but Jenkins’ hash was found to be slow.

While Goulburn was not clearly the fastest function, its tradeoff

between speed and quality makes it attractive for computer

graphics applications.

Conclusions

Each random source has its strengths and weaknesses, but

Goulburn has been developed to be well-suited to the demands of

computer graphics. It provides flexibility and good randomness at

a fair computational cost.

References

JENKINS, R. September 1997. Algorithm Alley: Hashing

Functions. Dr. Dobb’s Journal.

L’ECUYER, P. 2001. Software for Uniform Random Number

Generation: Distinguishing the Good from the Bad,

Proceedings on the 2001 Winter Simulation Conference.

MATSUMOTO, M. AND NISHIMURA, T. 1998. Mersenne Twister: A

623-Dimensionally Equidistributed Uniform Pseudo-Random

Number Generator, ACM Transactions on Modeling and

Computer Simulation 8, 1. 3-30.

NOLL, L. C. Fowler / Noll / Vo (FNV) Hash.

http://www.isthe.com/chongo/tech/comp/fnv/

PEARSON, P. June 1990. Fast Hashing of Variable-Length Text

Strings. Communications of the ACM, 33, 6. 677-680.

UZGALIS, R. AND TONG, M. 1994. Hashing Myths. Technical

Report 97, Department of Computer Science University of

Auckland.

WAGNER, R. May 2003. Mersenne Twister Random Number

Generator. http://www-

personal.engin.umich.edu/~wagnerr/MersenneTwister.html.

ZOBRIST, A. L. April 1970. A New Hashing Method with

Application for Game Playing. Technical Report 88,

Computer Sciences Department, University of Wisconsin.

Appendix 1: goulburn.h

// **
//
// The Goulburn Hashing Function and
// Pseudo-Random Number Generator
//
// Random Numbers for Computer Graphics, Aug 06
// ACM SIGGRAPH 2006, Sketches and Applications
//
// Copyright 2006, Mayur Patel
// This software listing for illustrative
// purposes only: USE AT YOUR OWN RISK
// **

#ifndef GOULBURN_H
#define GOULBURN_H

namespace goulburn {

typedef unsigned long value_type;
static const value_type max_value;

//
// The Goulburn Hashing Function
// The interface allows long hashes to be broken
// into piece-wise calculations, by passing the
// last value of the hash into the function.
//
value_type hash(const unsigned char *cp, unsigned len,
value_type last_value);

//
// A Pseudo-Random Number Generator based on the
// Goulburn hashing function. Developer specifies
// how many bytes to use for the state; of course
// this affects periodicity. Note that there's
// no magic here: any really good hashing function
// could be used as a driver for this kind of
// pseudo-random number generator.
//

// This is implemented with an optimization which
// costs 4 bytes of storage, so that the full hash
// over the entire state size is only required once
// every 256 calls. The rest of the time, we're only
// hashing one byte.
//
// The API is a subset of the ForwardIterator
// interface.
//
template< unsigned BYTES >
class prng {
protected:
 unsigned char _cp[BYTES];
 value_type _cache;

public:
 prng(void){ seed(0, 0); }
 prng(const unsigned char *cpSeed, unsigned len)
 { seed(cpSeed, len); }

 void seed(const unsigned char *cpSeed, unsigned len)
 {
 unsigned u=0;

 if(cpSeed)
 {
 for(; (u<len) && (u<BYTES); ++u)
 _cp[u] = cpSeed[u];
 }

 for(; u<BYTES; ++u)
 _cp[u] = 0;

 _cache = hash(_cp, BYTES - 1, 0);
 }

 value_type operator *(void) const
 {
 return hash(_cp + BYTES - 1, 1, _cache);
 }

 prng& operator++(void)
 {
 unsigned u = BYTES;
 do {
 --u;
 ++_cp[u];
 } while(u && (!_cp[u]));

 if(u != (BYTES-1))
 _cache = hash(_cp, BYTES - 1, 0);

 return *this;
 }

 prng operator++(int)
 {
 prng ret = *this;
 ++(*this);
 return ret;
 }
};

} // end namespace goulburn

#endif

Appendix 2: goulburn.cpp

// **
//
// The Goulburn Hashing Function and
// Pseudo-Random Number Generator
//
// Random Numbers for Computer Graphics, Aug 06
// ACM SIGGRAPH 2006, Sketches and Applications
//
// Copyright 2006, Mayur Patel
// This software listing for illustrative
// purposes only: USE AT YOUR OWN RISK

// **

#include <goulburn.h>

const goulburn::value_type g_table0[256] = {
4143812366,2806512183,4212398656,393834663,
3943187971,847901099,3746904015,2990585247,
4243977488,4075301976,2737181671,2429701352,
4196558752,3152011060,1432515895,204108242,
1180540305,922583281,1734842702,1453807349,
507756934,1553886700,2005976083,3346025117,
97642817,2510760451,4103916440,3222467334,
1312447049,522841194,3955607179,3028936967,
2763655970,3033075496,1935362065,512912210,
2660383701,1652921526,260485165,141882627,
2895806269,804034013,1356707616,3942447612,
2875374199,81028672,1055595160,2755907176,
2880512448,1232977841,3719796487,2940441976,
3739585976,168332576,1318372270,3173546601,
3992298512,3785690335,3667530757,3101895251,
2789438017,3213463724,3067100319,2554433152,
794184286,2599814956,1251486151,4214997752,
690900134,323888098,1537487787,1155362310,
1826165850,2358083425,2957662097,2514517438,
1828367703,3847031274,2308450901,955547506,
1037823031,2922505570,2544914051,2572931499,
442837508,1873354958,2004376537,25413657,
3560636876,1768043132,2870782748,1031556958,
715180405,201079975,4116730284,2748714587,
1091411202,33354499,1931487277,1039106939,
3327011403,396608379,3447523131,301432924,
3180185526,1780290520,3909968679,2398211959,
3704875308,66082280,601805180,3226323057,
3284786200,2282257088,700775591,3528928994,
1601645543,120115228,568698020,178214456,
41846783,897656032,3309570546,2624714322,
2542948622,1168171675,2460933760,93808223,
2384991231,4268721795,4001720080,1516739672,
4111847489,810915309,1238071781,935043360,
2020231594,37717498,3603218947,1534593867,
2819275526,1965883441,674162751,128087286,
4138356188,543626850,1355906380,3565721429,
1142978716,1614752605,1624389156,3363454971,
2029311310,2249603714,3448236784,1764058505,
2198836711,3481576182,3168665556,3834682664,
1979945243,3456525349,2721891322,1099639387,
1528675965,3069012165,1807951214,1901014398,
2805656341,3321210152,2317543573,1015607418,
178584554,4020226276,492648819,97778844,
4134244261,1389599433,331211243,3769684011,
2036127367,3174548433,3241354897,2570869934,
3071842004,1972073698,48467379,1015444026,
3126762609,1104264591,3096375666,1380392409,
684368280,1493310388,2109527660,3034364089,
3168522906,3042350939,3696929834,3410250713,
3726870750,3357455860,1816295563,2678332086,
26178399,614899533,2248041911,1431155883,
1184971826,3711847923,2744489682,168580352,
694400736,2659092308,811197288,1093111228,
824677015,2041709752,1650020171,2344240270,
3773698958,3393428365,3498636527,556541408,
1883820721,3249806350,3635420446,1661145756,
3087642385,1620143845,3852949019,1054565053,
3574021829,2466085457,2078148836,460565767,
4097474724,1381665351,1652238922,2200252397,
3726797486,4001080204,259576503,567653141,
325219513,1227314237,3191441965,1433728871,
4198425173,2908977223,3757065246,294312130,
4136006097,3409363054,2112383431,1177366649
};

const goulburn::value_type g_table1[128] = {
826524031,360568984,3001046685,1511935255,
1287825396,3167385669,1488463483,4077470910,
1360843071,986771770,2307292828,3845679814,
1429883439,1990257475,4087625806,1700033651,
1388994450,935547107,3237786789,644530675,
2274037095,888755779,3020158166,2136355264,
2558959443,1751931693,2325730565,3029134627,
668542860,2140243729,2384660990,666440934,
842610975,1563602260,1429103271,899918690,
3441536151,4078621296,1527765522,4191433361,
222526771,309447417,2035245353,3730203536,

3330019758,876252573,2545027471,453932528,
282738293,1826993794,1569532013,543681326,
3097574376,2336551794,1563241416,1127019882,
3088670038,2766122176,3706267663,1110947226,
2608363541,3166834418,1310161541,755904436,
2922000163,3815555181,1578365408,3137960721,
3254556244,4287631844,750375141,1481489491,
1903967768,3684774106,765971482,3225162750,
2946561128,1920278401,1803486497,4166913456,
1855615192,1934651772,1736560291,2101779280,
3560837687,3004438879,804667617,2969326308,
3118017313,3090405800,566615197,2451279063,
4029572038,2612593078,3831703462,914594646,
2873305199,2860901605,3296630085,1273702937,
2852911938,1003268745,1387783190,159227777,
2211994285,28095103,3659848176,3976935977,
3301276082,2641346573,651238838,2264520966,
1484747269,3016251036,3857206301,91952846,
1662449304,2028491746,1613452911,2409055848,
1453868667,4146146473,1646176015,3769580099,
3171524988,2980516679,828895558,3384493282
};

const goulburn::value_type max_value = 0xFFFFFFFF;

goulburn::value_type
goulburn::hash(const unsigned char *cp, unsigned len,
goulburn::value_type last_value)
{
 register goulburn::value_type h = last_value;
 unsigned u;

 for(u=0; u<len; ++u)
 {
 h += g_table0[cp[u]];
 h ^= (h << 3) ^ (h >> 29);
 h += g_table1[h >> 25];
 h ^= (h << 14) ^ (h >> 18);
 h += 1783936964UL;
 }

 return h;
}

*
 email: patelm@acm.org

This is an unpublished, extended version of the sketch:

PATEL, M. August 2006. Random Numbers for Computer

Graphics. ACM SIGGRAPH 2006, Sketches and

Applications.

