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Abstract 
 

We discuss the use of random numbers in computer 

graphics.  We analyze a new hashing function, which we 

call Goulburn, and argue that it is well-suited for 

computer graphics because of its very high quality and 

speed.  We discuss how to apply Goulburn to 

applications requiring pseudo-random number 

generation. 

 

 

1. Introduction 
 

Random numbers are critical in computer graphics, from sampling 

to aesthetics.  We believe that there are three families of random 

sources of interest to computer graphics developers: 

 

• Quasi-random number generators (QRNGs) 

• Pseudo-random number generators (PRNGs) 

• Hashing functions 

 

Ideally a developer’s toolbox would include high-quality 

algorithms for each of the three random sources.   

 

In practice, however, developers will often substitute tools.  In 

computer graphics sampling applications, it is usually sufficient to 

use PRNGs to produce jittered sample positions rather than to use 

QRNGs to produce low discrepancy sequences of sample points. 

 

In a similar spirit, a PRNG can be implemented using a hashing 

function in the following way: the seed for the generator would 

constitute the most significant bits of a very large integer counter.  

The integer counter can be hashed to produce a random value.  

Between calculations, the counter can be incremented by one.  

This is a known technique in cryptography, where secure PRNGs 

are implemented using secure hashing functions. 

 

Producing random values this way allows the developer to control 

the state size of the PRNG very explicitly.  This is particularly 

important in agent simulations which may require an instance of a 

PRNG for each agent.  Modern high-quality PRNGs often have 

large fixed-size states, making it prohibitive for very many 

instances to coexist in memory.  A good hashing function will be 

able to produce random values with sufficient speed and quality. 

 

Because PRNGs can be substituted for QRNGs in many cases, 

and good hashing functions can be substituted for PRNGs, we 

focus on good hashing functions as a random source for computer 

graphics.  

 

We found many popular hashing functions to be inadequate for 

computer graphics.  Some very fast hashing functions are 

sufficiently random to avoid collisions in a hash table, but still 

produce artifacts when used for lattice noises [Uzgalis and Tong 

1994; Noll].  Jenkins’ hash provides a high quality of randomness, 

but its speed is not exceptional [1997].  Inspired by the table-

based techniques used in Buzhash and Pearson’s algorithm 

[1990], we developed a hashing function suitable for computer 

graphics, which we call Goulburn. 

 

In the next section, we discuss Goulburn’s relationships to 

existing hashing functions.  In section 3, we discuss the design of 

Goulburn.  In section 4, we discuss the implementation of a 

PRNG using Goulburn.  In section 5, we present the results of 

empirical testing. 

 

 

2. Prior Art 
 

These are the most common application of hashing functions in 

computer science: 

 

• Error detection in information exchange. 

• Fast indexing of data / accelerating compare operations. 

• Cryptography. 

 

For most error detection and indexing applications, the avoidance 

of collisions is the foremost consideration, not the quality of 

randomness.  We found readily recognizable patterns in the output 

of many hashing functions that perform well for indexing 

applications [Pearson 1990; Uzgalis and Tong 1994; Noll].  Some 

of these results are presented in section 5.  Cryptographically 

secure hashing functions and strongly universal hashing functions 

do emphasis a good quality of randomness; however, we found 

these algorithms to be much less flexible in their application.  

They tended to require fixed-sized input or input in large fixed-

size blocks. 

 

For computer graphics, we require the hashing function to return 

high-quality random values from variable-length keys.  We also 

require very fast execution, because the hashing function will 

likely be called a very large number of times. 

 

In our investigations, table-based general hashing functions 

seemed to have the greatest potential to meet all requirements, so 

we focused our attention there.  Zobrist’s hash [1970] is an early 

form of table-based hashing.  The table for this function needs to 

be tailored for each context, so we did not find it best as a general 

hashing function.  Pearson’s hash [1990] requires processing 

output in 8-bit chunks, so that a 32-bit result requires four 

iterations.  Buzhash is very fast, but despite the author’s strong 

assertions of quality [Uzgalis and Tong 1994], we were readily 

able to find patterns in the output which made its quality 

unacceptable for our graphics applications. 

 



Goulburn can best be described as an evolution of Pearson’s hash 

and Buzhash.  In the next section, we describe the function in 

some detail. 

 

 

3. The Goulburn Hashing Function 
 

Goulburn is a general hashing function.  Like many hashing 

schemes, Goulburn is based on executing a series of instructions 

that are one-to-one mappings, whose range and domain are the 

same set of values when executed on modern microprocessors.  

This helps to insure that collisions do not occur unnecessarily 

frequently.  Here is a list of such instructions: 

 

• f(x) = x + i 

• f(x) = x ^ i 

• f(x) = r( x, j ) 

• f(x) = x ^ r( x, j ) 

 

with the following definitions: 

 

• i and j are integers; j ≠ 0 

• “^” is the bitwise XOR operation 

• r( x, j ) is the circular left shift of x by j bits. 

 

The inner loop of the 32-bit hashing function is listed, using C: 

 
1. for( u=0; u<len; ++u ) 
2. { 
3.   h += table0[ c[u] ]; 
4.   h ^= (h << 3) ^ (h >> 29); 
5.   h += table1[ h >> 25 ]; 
6.   h ^= (h << 14) ^ (h >> 18); 
7.   h += 1783936964UL; 
8. } 

 

Clearly, we could produce 64-bit or 128-bit hash values on 

machines that support registers of those widths, without 

significant additional expense.  A more thorough listing of the 

Goulburn function can be found in the appendices. 

 

Lines 3 and 4 closely resemble a Buzhash function.  Table zero is 

constructed in the same manner as the table used in Buzhash: the 

table is an unbiased, randomized set of binary words.  Lines 5 and 

6 apply additional randomization to avoid “echoing” patterns 

observed when using Buzhash in visual applications.   

 

Table one contains binary words, where each word has an equal 

number of ones and zeroes, but the exact permutations are 

random.  We do this to guarantee that the addition instruction in 

line 5 toggles at least half the bits of the word. 

 

Buzhash and Pearson’s hash use the XOR instruction, relying on 

the property that the XOR of two values has the maximum 

entropy of the two values. In other words, if you cannot predict 

the value of either X or Y, then you cannot predict the value of the 

XOR of X and Y.  The quality of randomness is intended to come 

from the lookup table, and this quality is intended to be preserved 

through the XOR operations. 

 

Goulburn uses ADD instructions on lines 3 and 5 instead of XOR.  

We do this to increase the complexity of the relationships between 

the random values in the tables and the bits of the hash value.  Let 

binary words X and Y consist of binary digits, xn..x0, and yn..y0 

respectively, and let Y be a uniformly distributed random value.  

The addition of the least significant bits, x0 and y0, creates an 

output value which has the maximum entropy of x0 and y0 because 

this is simply an XOR operation.  The carry bit becomes an extra 

random signal, even if it is a weak one, to be applied to the next 

bit, where a three-way XOR is performed to produce that output 

bit.  In this way, randomness in less significant bits is carried to 

more significant bits.  In testing, we observed that this improved 

the quality of randomness in our hashing function.  The use of an 

ADD instruction on line 7, and the rotations on lines 4 and 6, 

insures that entropy is distributed more evenly, instead of 

collecting in a narrow range of bits within the hash value. 

 

Jenkins lists these as properties of a good general hashing 

function [1997]: 

 

1. Keys can be variable length, of any kind of data. 

2. Sets of independent hashing functions may be required. 

3. The hash calculation should be fast. 

4. A change in any bit of the input could possibly affect 

every bit of the output. 

5. Common substrings and patterns between different 

inputs should not increase the probability that the 

hashes of the two keys are equal. 

 

Goulburn loops byte-wise over a key, so it satisfies criterion one.  

The tables used in Goulburn can be regenerated dynamically to 

satisfy criterion two.  In section five, we discuss performance 

issues relating to criterion three.  It suffices to say here that we 

found Goulburn to be at least twice as fast as Jenkins’ function.  

The application of the two random tables, followed with rotations, 

insures that criteria four and five are satisfied. 

 

 

4. Goulburn as a PRNG 
 

In the introduction, we described how a good hashing function 

could be used as a PRNG, by initializing the most significant bits 

of a large integer counter with a seed value, by hashing this large 

integer to produce random values, and by incrementing the large 

integer between invocations of the function. 

 

Goulburn, like many hashing functions, has a simple initialization 

step, followed by a per-byte loop to produce the output hash 

value.  When used as a PRNG, this structure facilitates the 

following optimization: if the large integer counter is 

implemented as a series of bytes bn..b0, where b0 is the least 

significant byte, and if the traversal order of the hash loop is from 

bn to b0, then we can cache the hash of the partial word, bn..b1 so 

we usually only need to execute the final iteration of the hash loop 

to incorporate b0 into the final hash value.  This means that most 

invocations of the PRNG will execute in constant time regardless 

of the size of the integer counter.  Of course, when b0 overflows, 

then we need to refresh our cached calculation, which is linear 

with the size of the integer counter.  If the output hash value is 32-

bits, then the optimization costs 32-bits of storage.  However, the 

dramatic increase in the performance of the PRNG can often 

justify the additional storage expense.  The listing in the 

appendices demonstrates the technique. 

 

When considering the periodicity of Goulburn as a PRNG, 

unfortunately we cannot make very strong guarantees. If A is a 

counter consisting of bytes an..a0, and B is a counter consisting of 

bytes bm..b0, where a0 and b0 are the least significant bytes and are 



unequal, then even if the hash value of A equals the hash value of 

B, the two words do not represent the same state of the PRNG and 

will not produce equivalent sequences.  For proof of this, consider 

incrementing A and B.  The least significant bytes will now 

produce very different values during the hash calculations 

(especially during table lookup) and the hash output value will be 

different. 

 

However, imagine that A and B are the most significant bytes of 

other larger counters, A’ and B’. Also let A’ and B’ have equal 

least significant bytes: A’ has the bytes an..a0ci..c0 and B’ has the 

bytes bm..b0ci..c0.  In this case, A’ and  B’ will have the same hash 

value.  In fact, they will produce equal hash values for a sequence 

length of 256i+1.  We know that some pair of A and B must exist, 

because the hash value is of fixed size, so collisions must occur 

for some pair of arbitrarily big keys.  Because of this, we cannot 

guarantee that the PRNG based on Goulburn will not demonstrate 

some properties of short periodicity; however, in practice and 

empirical testing we have not observed particularly bad results in 

this regard. 

 

In many computer graphics applications, the need for huge 

periodicities is not as acute as it might be in some scientific 

applications.  Furthermore, since the quality of randomness is 

good, it may not be harmful to observe short sequences of 

redundant values at irregular intervals in computer graphics 

applications.  This is obviously not true for all fields of 

computing. 

 

L’Ecuyer gives these as criteria for good random number 

generators [2001]: 

• Guaranteed long periodicity 

• Efficient in memory and execution 

• Repeatable 

• Portable 

• Allows jumping forward and backward in the sequence 

by large steps 

• Emperically tested, both with statistical tests and in the 

context of target applications. 

 

Goulburn, as a PRNG, scores poorly in the first criterion, but does 

well in the others.  Results of empirical testing are the subject of 

the next section. 

 

 

5. Emperical Testing 
 

In this section, we present tests for quality and speed for four 

hashing functions: Buzhash, FNV1a, Jenkins’ hash and Goulburn.   

 

In the following images, we simply produced an image of hash 

values, where the color of each pixel is the hash of the 2D pixel 

coordinate.  It is easy to observe patterns in Buzhash and FNV1a.  

Jenkins’ hash and Goulburn produced images that visually appear 

to be random. 

 

 

 

 
 

Figure 1: Image of a Buzhash output 

 

 

 
 

Figure 2: Image of an FNV1a hash output 

 

 

 
 

Figure 3: Image of a Jenkins’ hash output 

 

 

 
 

Figure 4: Image of a Goulburn hash output 

 

 

The visual representation is obviously not a rigorous test of 

randomness. We tested the four functions using the Diehard 

statistical tests.  We analyzed hash values generated from two 

different access patterns, an incrementing large integer key and 

3D Hilbert curve coordinates.  We believe these are representative 

of the types of access patterns that developers observe in 

computer graphics. 
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Goulburn passed all the Diehard statistical tests for both types of 

keys.  Jenkins’ hash matched Goulburn’s quality on the Hilbert 

curve coordinates. 

 

We also implemented PRNGs using the four hashing functions, 

with a 64-bit state and with the optimization described in the 

previous section, costing an extra 4 bytes of storage. We 

compared the performance of these to Wagner’s implementation 

of Mersenne Twister [Wagner 2003; Matsumoto and Nishimura 

1998], which is generally considered to be the fastest PRNG of 

very high quality. 

 

PRNG Performance
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Comparing the Goulburn PRNG to Mersenne Twister, it ran 15% 

slower on an Athlon64 processor, 21% faster on a Pentium 4, and 

24% faster on a Centrino processor.  Buzhash and FNV1a tended 

to outperform Goulburn, but Jenkins’ hash was found to be slow. 

 

While Goulburn was not clearly the fastest function, its tradeoff 

between speed and quality makes it attractive for computer 

graphics applications. 

 

 

Conclusions 
 

Each random source has its strengths and weaknesses, but 

Goulburn has been developed to be well-suited to the demands of 

computer graphics.  It provides flexibility and good randomness at 

a fair computational cost. 
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Appendix 1: goulburn.h 
 
// ********************************************** 
// 
// The Goulburn Hashing Function and 
// Pseudo-Random Number Generator 
// 
// Random Numbers for Computer Graphics, Aug 06 
// ACM SIGGRAPH 2006, Sketches and Applications 
// 
// Copyright 2006, Mayur Patel 
// This software listing for illustrative 
// purposes only:  USE AT YOUR OWN RISK 
// ********************************************** 
 
#ifndef GOULBURN_H 
#define GOULBURN_H 
 
namespace goulburn { 
 
typedef unsigned long value_type; 
static const value_type max_value; 
 
// 
// The Goulburn Hashing Function 
// The interface allows long hashes to be broken 
// into piece-wise calculations, by passing the 
// last value of the hash into the function. 
// 
value_type hash( const unsigned char *cp, unsigned len, 
value_type last_value ); 
 
// 
// A Pseudo-Random Number Generator based on the 
// Goulburn hashing function.  Developer specifies 
// how many bytes to use for the state; of course 
// this affects periodicity.  Note that there's 
// no magic here: any really good hashing function 
// could be used as a driver for this kind of 
// pseudo-random number generator. 
// 



// This is implemented with an optimization which 
// costs 4 bytes of storage, so that the full hash 
// over the entire state size is only required once 
// every 256 calls.  The rest of the time, we're only 
// hashing one byte. 
// 
// The API is a subset of the ForwardIterator 
// interface. 
// 
template< unsigned BYTES > 
class prng { 
protected: 
  unsigned char _cp[BYTES]; 
  value_type _cache; 
 
public: 
  prng( void ){ seed( 0, 0 ); } 
  prng( const unsigned char *cpSeed, unsigned len ) 
  { seed( cpSeed, len ); } 
 
  void seed( const unsigned char *cpSeed, unsigned len ) 
  { 
    unsigned u=0; 
 
    if( cpSeed ) 
    { 
      for( ; (u<len) && (u<BYTES); ++u ) 
        _cp[u] = cpSeed[u]; 
    } 
 
    for( ; u<BYTES; ++u ) 
      _cp[u] = 0; 
 
    _cache = hash( _cp, BYTES - 1, 0 ); 
  } 
 
 
  value_type operator *(void) const 
  { 
    return hash( _cp + BYTES - 1, 1, _cache ); 
  } 
 
  prng& operator++(void) 
  { 
    unsigned u = BYTES; 
    do { 
      --u; 
      ++_cp[u]; 
    } while( u && (!_cp[u]) ); 
 
    if( u != (BYTES-1) ) 
      _cache = hash( _cp, BYTES - 1, 0 ); 
       
    return *this; 
  } 
     
  prng operator++(int) 
  { 
    prng ret = *this; 
    ++(*this); 
    return ret; 
  } 
}; 
 
} // end namespace goulburn 
 
#endif 

 

 

Appendix 2: goulburn.cpp 
 
// ********************************************** 
// 
// The Goulburn Hashing Function and 
// Pseudo-Random Number Generator 
// 
// Random Numbers for Computer Graphics, Aug 06 
// ACM SIGGRAPH 2006, Sketches and Applications 
// 
// Copyright 2006, Mayur Patel 
// This software listing for illustrative 
// purposes only:  USE AT YOUR OWN RISK 

// ********************************************** 
 
#include <goulburn.h> 
 
const goulburn::value_type g_table0[256] =  { 
4143812366,2806512183,4212398656,393834663, 
3943187971,847901099,3746904015,2990585247, 
4243977488,4075301976,2737181671,2429701352, 
4196558752,3152011060,1432515895,204108242, 
1180540305,922583281,1734842702,1453807349, 
507756934,1553886700,2005976083,3346025117, 
97642817,2510760451,4103916440,3222467334, 
1312447049,522841194,3955607179,3028936967, 
2763655970,3033075496,1935362065,512912210, 
2660383701,1652921526,260485165,141882627, 
2895806269,804034013,1356707616,3942447612, 
2875374199,81028672,1055595160,2755907176, 
2880512448,1232977841,3719796487,2940441976, 
3739585976,168332576,1318372270,3173546601, 
3992298512,3785690335,3667530757,3101895251, 
2789438017,3213463724,3067100319,2554433152, 
794184286,2599814956,1251486151,4214997752, 
690900134,323888098,1537487787,1155362310, 
1826165850,2358083425,2957662097,2514517438, 
1828367703,3847031274,2308450901,955547506, 
1037823031,2922505570,2544914051,2572931499, 
442837508,1873354958,2004376537,25413657, 
3560636876,1768043132,2870782748,1031556958, 
715180405,201079975,4116730284,2748714587, 
1091411202,33354499,1931487277,1039106939, 
3327011403,396608379,3447523131,301432924, 
3180185526,1780290520,3909968679,2398211959, 
3704875308,66082280,601805180,3226323057, 
3284786200,2282257088,700775591,3528928994, 
1601645543,120115228,568698020,178214456, 
41846783,897656032,3309570546,2624714322, 
2542948622,1168171675,2460933760,93808223, 
2384991231,4268721795,4001720080,1516739672, 
4111847489,810915309,1238071781,935043360, 
2020231594,37717498,3603218947,1534593867, 
2819275526,1965883441,674162751,128087286, 
4138356188,543626850,1355906380,3565721429, 
1142978716,1614752605,1624389156,3363454971, 
2029311310,2249603714,3448236784,1764058505, 
2198836711,3481576182,3168665556,3834682664, 
1979945243,3456525349,2721891322,1099639387, 
1528675965,3069012165,1807951214,1901014398, 
2805656341,3321210152,2317543573,1015607418, 
178584554,4020226276,492648819,97778844, 
4134244261,1389599433,331211243,3769684011, 
2036127367,3174548433,3241354897,2570869934, 
3071842004,1972073698,48467379,1015444026, 
3126762609,1104264591,3096375666,1380392409, 
684368280,1493310388,2109527660,3034364089, 
3168522906,3042350939,3696929834,3410250713, 
3726870750,3357455860,1816295563,2678332086, 
26178399,614899533,2248041911,1431155883, 
1184971826,3711847923,2744489682,168580352, 
694400736,2659092308,811197288,1093111228, 
824677015,2041709752,1650020171,2344240270, 
3773698958,3393428365,3498636527,556541408, 
1883820721,3249806350,3635420446,1661145756, 
3087642385,1620143845,3852949019,1054565053, 
3574021829,2466085457,2078148836,460565767, 
4097474724,1381665351,1652238922,2200252397, 
3726797486,4001080204,259576503,567653141, 
325219513,1227314237,3191441965,1433728871, 
4198425173,2908977223,3757065246,294312130, 
4136006097,3409363054,2112383431,1177366649 
}; 
 
const goulburn::value_type g_table1[128] = { 
826524031,360568984,3001046685,1511935255, 
1287825396,3167385669,1488463483,4077470910, 
1360843071,986771770,2307292828,3845679814, 
1429883439,1990257475,4087625806,1700033651, 
1388994450,935547107,3237786789,644530675, 
2274037095,888755779,3020158166,2136355264, 
2558959443,1751931693,2325730565,3029134627, 
668542860,2140243729,2384660990,666440934, 
842610975,1563602260,1429103271,899918690, 
3441536151,4078621296,1527765522,4191433361, 
222526771,309447417,2035245353,3730203536, 



3330019758,876252573,2545027471,453932528, 
282738293,1826993794,1569532013,543681326, 
3097574376,2336551794,1563241416,1127019882, 
3088670038,2766122176,3706267663,1110947226, 
2608363541,3166834418,1310161541,755904436, 
2922000163,3815555181,1578365408,3137960721, 
3254556244,4287631844,750375141,1481489491, 
1903967768,3684774106,765971482,3225162750, 
2946561128,1920278401,1803486497,4166913456, 
1855615192,1934651772,1736560291,2101779280, 
3560837687,3004438879,804667617,2969326308, 
3118017313,3090405800,566615197,2451279063, 
4029572038,2612593078,3831703462,914594646, 
2873305199,2860901605,3296630085,1273702937, 
2852911938,1003268745,1387783190,159227777, 
2211994285,28095103,3659848176,3976935977, 
3301276082,2641346573,651238838,2264520966, 
1484747269,3016251036,3857206301,91952846, 
1662449304,2028491746,1613452911,2409055848, 
1453868667,4146146473,1646176015,3769580099, 
3171524988,2980516679,828895558,3384493282 
}; 
 
const goulburn::value_type max_value = 0xFFFFFFFF; 
 
goulburn::value_type 
goulburn::hash( const unsigned char *cp, unsigned len, 
goulburn::value_type last_value ) 
{ 
  register goulburn::value_type h = last_value; 
  unsigned u; 
 
  for( u=0; u<len; ++u ) 
  { 
    h += g_table0[ cp[u] ]; 
    h ^= (h << 3) ^ (h >> 29); 
    h += g_table1[ h >> 25 ]; 
    h ^= (h << 14) ^ (h >> 18); 
    h += 1783936964UL; 
  } 
 
  return h; 
} 
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